
Python pour Développeurs Java — Cheatsheet

Adservio | Dr Olivier Vitrac

2026-02-03

Contents
1 Python pour Développeurs Java — Cheatsheet 2
1.1 Philosophie . 2
1.2 Syntaxe de Base . 2

1.2.1 Hello World . 2
1.2.2 Variables . 2
1.2.3 Conditions . 2
1.2.4 Boucles . 3

1.3 Collections . 3
1.3.1 Listes (≈ ArrayList) . 3
1.3.2 Dictionnaires (≈ HashMap) . 4
1.3.3 Sets (≈ HashSet) . 4

1.4 Fonctions . 4
1.4.1 Définition . 4
1.4.2 Arguments par défaut . 4
1.4.3 Lambda . 5

1.5 Classes . 5
1.5.1 Définition . 5
1.5.2 Dataclass (≈ Record Java) . 5
1.5.3 Héritage . 6

1.6 Gestion d’Erreurs . 6
1.7 Fichiers . 6
1.8 JSON . 7
1.9 Concurrence . 7
1.10Tests . 8
1.11Idiomes Python Courants . 8

1.11.1List Comprehension . 8
1.11.2Unpacking . 8
1.11.3F-strings . 8
1.11.4Walrus Operator (:=) . 9

1.12Pièges pour Javistes . 9
1.12.11. Indentation significative . 9
1.12.22. Mutable par défaut dans les arguments . 9
1.12.33. == vs is . 9
1.12.44. Pas de switch (avant 3.10) . 9

1.13Ressources . 10

1

Python pour Développeurs Java - Cheatsheet Adservio

1 Python pour Développeurs Java — Cheatsheet
1.1 Philosophie

Java Python
Compilation explicite Interprété, REPL
Types statiques stricts Types dynamiques (+ hints optionnels)
Verbeux mais explicite Concis, “batteries included”
public static void main Script direct

1.2 Syntaxe de Base
1.2.1 Hello World

// Java
public class Main {

public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

Python
print("Hello, World!")

1.2.2 Variables

// Java
String name = "Alice";
int age = 30;
final double PI = 3.14159;

Python
name = "Alice"
age = 30
PI = 3.14159 # Convention MAJUSCULES, pas de const

Type hints (optionnels, pour documentation)
name: str = "Alice"
age: int = 30

1.2.3 Conditions

// Java
if (x > 0) {

System.out.println("positif");
} else if (x < 0) {

System.out.println("négatif");
} else {

System.out.println("zéro");
}

Workshop Agents IA - Python Cheatsheet - 2 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

Python — indentation obligatoire, pas de {}
if x > 0:

print("positif")
elif x < 0:

print("négatif")
else:

print("zéro")

1.2.4 Boucles

// Java - for classique
for (int i = 0; i < 10; i++) {

System.out.println(i);
}

// Java - for-each
for (String item : items) {

System.out.println(item);
}

Python - range
for i in range(10):

print(i)

Python - itération directe
for item in items:

print(item)

Python - avec index
for i, item in enumerate(items):

print(f"{i}: {item}")

1.3 Collections
1.3.1 Listes (≈ ArrayList)

// Java
List<String> fruits = new ArrayList<>();
fruits.add("pomme");
fruits.add("banane");
String first = fruits.get(0);

Python
fruits = ["pomme", "banane"]
fruits.append("orange")
first = fruits[0]

Slicing (puissant !)
last = fruits[-1] # Dernier élément
subset = fruits[1:3] # Index 1 et 2
reversed_list = fruits[::-1] # Inversion

Workshop Agents IA - Python Cheatsheet - 3 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

1.3.2 Dictionnaires (≈ HashMap)

// Java
Map<String, Integer> ages = new HashMap<>();
ages.put("Alice", 30);
ages.put("Bob", 25);
int age = ages.get("Alice");

Python
ages = {"Alice": 30, "Bob": 25}
ages["Charlie"] = 35
age = ages["Alice"]
age = ages.get("Alice", 0) # Valeur par défaut si absent

1.3.3 Sets (≈ HashSet)

// Java
Set<String> unique = new HashSet<>();
unique.add("a");
unique.add("b");

Python
unique = {"a", "b"}
unique.add("c")

1.4 Fonctions
1.4.1 Définition

// Java
public static int add(int a, int b) {

return a + b;
}

Python
def add(a, b):

return a + b

Avec type hints
def add(a: int, b: int) -> int:

return a + b

1.4.2 Arguments par défaut

// Java — surcharge nécessaire
public static void greet(String name) {

greet(name, "Hello");
}
public static void greet(String name, String greeting) {

System.out.println(greeting + ", " + name);
}

Python — valeur par défaut
def greet(name, greeting="Hello"):

print(f"{greeting}, {name}")

Workshop Agents IA - Python Cheatsheet - 4 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

greet("Alice") # Hello, Alice
greet("Bob", "Bonjour") # Bonjour, Bob

1.4.3 Lambda

// Java
Function<Integer, Integer> square = x -> x * x;

Python
square = lambda x: x * x

1.5 Classes
1.5.1 Définition

// Java
public class Person {

private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getName() {
return name;

}

@Override
public String toString() {

return "Person(" + name + ", " + age + ")";
}

}

Python
class Person:

def __init__(self, name: str, age: int):
self.name = name
self.age = age

def __str__(self):
return f"Person({self.name}, {self.age})"

Utilisation
p = Person("Alice", 30)
print(p.name) # Pas de getter explicite

1.5.2 Dataclass (≈ Record Java)

from dataclasses import dataclass

Workshop Agents IA - Python Cheatsheet - 5 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

@dataclass
class Person:

name: str
age: int

Génère automatiquement __init__, __repr__, __eq__
p = Person("Alice", 30)

1.5.3 Héritage

// Java
public class Student extends Person {

private String school;

public Student(String name, int age, String school) {
super(name, age);
this.school = school;

}
}

Python
class Student(Person):

def __init__(self, name: str, age: int, school: str):
super().__init__(name, age)
self.school = school

1.6 Gestion d’Erreurs
// Java
try {

int result = 10 / 0;
} catch (ArithmeticException e) {

System.out.println("Division par zéro");
} finally {

System.out.println("Cleanup");
}

Python
try:

result = 10 / 0
except ZeroDivisionError:

print("Division par zéro")
except Exception as e:

print(f"Erreur: {e}")
finally:

print("Cleanup")

1.7 Fichiers
// Java
try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {

Workshop Agents IA - Python Cheatsheet - 6 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

String line;
while ((line = reader.readLine()) != null) {

System.out.println(line);
}

}

Python — context manager (équivalent try-with-resources)
with open("file.txt", "r") as f:

for line in f:
print(line.strip())

Tout lire d'un coup
content = open("file.txt").read()

Écriture
with open("output.txt", "w") as f:

f.write("Hello\n")

1.8 JSON
// Java (avec Jackson)
ObjectMapper mapper = new ObjectMapper();
MyClass obj = mapper.readValue(jsonString, MyClass.class);
String json = mapper.writeValueAsString(obj);

Python — intégré
import json

Parsing
data = json.loads('{"name": "Alice", "age": 30}')
print(data["name"])

Sérialisation
json_str = json.dumps({"name": "Bob"}, indent=2)

Fichier
with open("data.json") as f:

data = json.load(f)

with open("output.json", "w") as f:
json.dump(data, f, indent=2)

1.9 Concurrence
// Java — CompletableFuture
CompletableFuture.supplyAsync(() -> fetchData())

.thenApply(data -> process(data))

.join();

Python — asyncio
import asyncio

Workshop Agents IA - Python Cheatsheet - 7 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

async def main():
data = await fetch_data()
result = await process(data)
return result

asyncio.run(main())

1.10 Tests
// Java — JUnit
@Test
public void testAdd() {

assertEquals(4, Calculator.add(2, 2));
}

Python — pytest
def test_add():

assert add(2, 2) == 4

Exécution
pytest test_file.py -v

1.11 Idiomes Python Courants
1.11.1 List Comprehension

Équivalent de stream().map().collect()
squares = [x**2 for x in range(10)]

Avec filtre
evens = [x for x in range(10) if x % 2 == 0]

Dict comprehension
squares_dict = {x: x**2 for x in range(5)}

1.11.2 Unpacking

Déstructuration
a, b, c = [1, 2, 3]
first, *rest = [1, 2, 3, 4] # first=1, rest=[2,3,4]

Swap
a, b = b, a

1.11.3 F-strings

name = "Alice"
age = 30
print(f"Je suis {name}, j'ai {age} ans")
print(f"Calcul: {2 + 2 = }") # Affiche "Calcul: 2 + 2 = 4"

Workshop Agents IA - Python Cheatsheet - 8 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

1.11.4 Walrus Operator (:=)

Assignation dans une expression
if (n := len(items)) > 10:

print(f"Trop d'items: {n}")

1.12 Pièges pour Javistes
1.12.1 1. Indentation significative

� Erreur de syntaxe
if True:
print("oui")

� Correct
if True:

print("oui")

1.12.2 2. Mutable par défaut dans les arguments

� Bug classique
def append_to(item, lst=[]):

lst.append(item)
return lst

append_to(1) # [1]
append_to(2) # [1, 2] ← Surprise !

� Correct
def append_to(item, lst=None):

if lst is None:
lst = []

lst.append(item)
return lst

1.12.3 3. == vs is

a = [1, 2, 3]
b = [1, 2, 3]

a == b # True (valeurs égales)
a is b # False (objets différents)

Pour None, toujours utiliser is
if x is None:

pass

1.12.4 4. Pas de switch (avant 3.10)

Python 3.10+ : match/case
match status:

case 200:

Workshop Agents IA - Python Cheatsheet - 9 / 10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

print("OK")
case 404:

print("Not Found")
case _:

print("Unknown")

Avant 3.10 : dict
actions = {

200: lambda: print("OK"),
404: lambda: print("Not Found"),

}
actions.get(status, lambda: print("Unknown"))()

1.13 Ressources
• Python Official Tutorial
• Real Python
• Python for Java Developers

Cheatsheet de référence — À garder sous la main pendant le workshop.

Workshop Agents IA - Python Cheatsheet - 10 / 10 2026-02-03

https://docs.python.org/3/tutorial/
https://realpython.com/
https://realpython.com/java-vs-python/

	Python pour Développeurs Java — Cheatsheet
	Philosophie
	Syntaxe de Base
	Hello World
	Variables
	Conditions
	Boucles

	Collections
	Listes (≈ ArrayList)
	Dictionnaires (≈ HashMap)
	Sets (≈ HashSet)

	Fonctions
	Définition
	Arguments par défaut
	Lambda

	Classes
	Définition
	Dataclass (≈ Record Java)
	Héritage

	Gestion d’Erreurs
	Fichiers
	JSON
	Concurrence
	Tests
	Idiomes Python Courants
	List Comprehension
	Unpacking
	F-strings
	Walrus Operator (:=)

	Pièges pour Javistes
	1. Indentation significative
	2. Mutable par défaut dans les arguments
	3. == vs is
	4. Pas de switch (avant 3.10)

	Ressources

