Python pour Développeurs Java — Cheatsheet

Adservio | Dr Olivier Vitrac

2026-02-03

Contents

1 Python pour Développeurs Java — Cheatsheet

1.1 Philosophie e e e e

1.2 Syntaxede Base e e e e

1.2.1 HelloWorld e e e

1.2.2 Variables e e e

1.2.3 Conditions e e e e e e e

1.2.4 Boucles e e e e e

1.3 Collections e e e e e e e

1.3.1 Listes (= ArrayList) e e e e e e e e

1.3.2 Dictionnaires (= HashMap)o

1.3.3 Sets (= HashSet) e e

1.4 Fonclions e e e e e

1.4.1 Définition e e e e e e

1.4.2 Arguments pardéfaut L

1.4.3 Lambda e e e e

1.5 Classes o v i e e e e e e e e e e

1.5.1 Définition L e e e

1.5.2 Dataclass (= Record Java) e e

1.5.3 Héritage e e e

6 Gestiond’Erreurs L e e e e

7 Fichiers e e e e e

8 JSON . . . e e e e e e

9 CONCUITENCE o e e e e e e e e e e e e e s s e e

10Tests e e e e e e e e e e e e

llldiomes Python Courants L

1.11.1List Comprehension L e e

1.11.2Unpacking e e e e e e e

L1I1.3F-strings o o e e e e e e e e e e e

1.11.4Walrus Operator (:=) o e e e e e e e e e

1.12Pieges pourjavistes e e e

1.12.11. Indentation significativeo Lo

1.12.22. Mutable par défaut danslesarguments

1.12.33. == VSIS . . .« o e e e e e e e e e e e

1.12.44. Pas de switch (avant 3.10) e
LLI3RESSOUICES . . v v v v v e e e e e e e e e e e e e e e e e e 1

1.
1.
1.
1.
1.
1.

QLVLUOVWLOVLVOVWVWWOWOOOWOWMOWMOLONNOOOOUTUTUUAEADRDDRMPRMWWWNNNNNN

Python pour Développeurs Java - Cheatsheet

Adservio

1 Python pour Développeurs Java — Cheatsheet

1.1 Philosophie

Java Python

Compilation explicite Interprété, REPL

Types statiques stricts Types dynamiques (+ hints optionnels)
Verbeux mais explicite Concis, “batteries included”

public static void main Script direct

1.2 Syntaxe de Base
1.2.1 Hello World

// Java
public class Main {
public static void main(String[] args) {
System.out.println("Hello, World!");
}
}

Python
print("Hello, World!")

1.2.2 Variables

// Java

String name = "Alice";

int age = 30;

final double PI = 3.14159;
Python

name = "Alice"

age = 30

PI = 3.14159 # Convention MAJUSCULES, pas de const

Type hints (optionnels, pour documentation)
name: str = "Alice"
age: int = 30

1.2.3 Conditions

// Java

if (x > 0) {
System.out.println("positif");

} else if (x < 0) {
System.out.println("négatif");

} else {
System.out.println("zéro");

}

Workshop Agents IA - Python Cheatsheet - 2/10

2026-02-03

Python pour Développeurs Java - Cheatsheet

Adservio

Python — indentation obligatoire, pas de {}
if x > 0:
print("positif")
elif x < 0:
print("négatif")
else:
print("zéro")

1.2.4 Boucles

// Java - for classique

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

// Java - for-each

for (String item : items) {
System.out.println(item);

}

Python - range
for i in range(10):
print(i)

Python - itération directe
for item in items:
print(item)

Python - avec index
for i, item in enumerate(items):
print(f"{i}: {item}")

1.3 Collections
1.3.1 Listes (= Arraylist)

// Java

List<String> fruits = new ArraylList<>();
fruits.add("pomme");
fruits.add("banane");

String first = fruits.get(0);

Python

fruits = ["pomme", "banane"]
fruits.append("orange")
first = fruits[0]

Slicing (puissant !)

last = fruits[-1] # Dernier élément
subset = fruits[1:3] # Index 1 et 2
reversed list = fruits[::-1] # Inversion

Workshop Agents IA - Python Cheatsheet - 3/10

2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

1.3.2 Dictionnaires (= HashMap)

// Java

Map<String, Integer> ages = new HashMap<>();
ages.put("Alice", 30);

ages.put("Bob", 25);

int age = ages.get("Alice");

Python

ages = {"Alice": 30, "Bob": 25}

ages["Charlie"] = 35

age = ages["Alice"]

age = ages.get("Alice", 0) # Valeur par défaut si absent

1.3.3 Sets (= HashSet)

// Java

Set<String> unique = new HashSet<>();
unique.add("a");

unique.add("b");

Python
unique = {"a", "b"}
unique.add("c")

1.4 Fonctions
1.4.1 Définition

// Java
public static int add(int a, int b) {
return a + b;

}
Python

def add(a, b):
return a + b

Avec type hints
def add(a: int, b: int) -> int:
return a + b

1.4.2 Arguments par défaut

// Java — surcharge nécessaire
public static void greet(String name) {
greet(name, "Hello");

}

public static void greet(String name, String greeting) {
System.out.println(greeting + ", " + name);

}

Python — valeur par défaut
def greet(name, greeting="Hello"):
print(f"{greeting}, {name}")

Workshop Agents IA - Python Cheatsheet - 4/10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

greet("Alice") # Hello, Alice
greet("Bob", "Bonjour") # Bonjour, Bob

1.4.3 Lambda

// Java
Function<Integer, Integer> square = x -> X * Xx;

Python
square = lambda x: x * X

1.5 Classes
1.5.1 Définition

// Java

public class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getName() {
return name;

}
@Override
public String toString() {
return "Person(" + name + ", " + age + ")";
}
}
Python

class Person:
def init (self, name: str, age: int):
self.name = name
self.age = age

def str (self):
return f"Person({self.name}, {self.age})"

Utilisation
p = Person("Alice", 30)
print(p.name) # Pas de getter explicite

1.5.2 Dataclass (= Record Java)

from dataclasses import dataclass

Workshop Agents IA - Python Cheatsheet - 5/10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

@dataclass

class Person:
name: str
age: int

Génére automatiquement init , repr , eq
p = Person("Alice", 30)

1.5.3 Héritage

// Java
public class Student extends Person {
private String school;

public Student(String name, int age, String school) {
super(name, age);
this.school = school;

}

Python
class Student(Person):
def init (self, name: str, age: int, school: str):
super(). init (name, age)
self.school = school

1.6 Gestion d’Erreurs

// Java
try {
int result = 10 / 0;
} catch (ArithmeticException e) {
System.out.println("Division par zéro");
} finally {
System.out.println("Cleanup");
}

Python
try:
result = 10 / 0
except ZeroDivisionError:
print("Division par zéro")
except Exception as e:
print(f"Erreur: {e}")
finally:
print("Cleanup")

1.7 Fichiers

// Java
try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {

Workshop Agents IA - Python Cheatsheet - 6/10 2026-02-03

Python pour Développeurs Java - Cheatsheet Adservio

String line;
while ((line = reader.readlLine()) '= null) {
System.out.println(line);
}
}

Python — context manager (équivalent try-with-resources)
with open("file.txt", "r") as f:
for line in f:
print(line.strip())

Tout lire d'un coup
content = open("file.txt").read()

Ecriture
with open("output.txt", "w") as f:
f.write("Hello\n")

1.8 JSON

// Java (avec Jackson)

ObjectMapper mapper = new ObjectMapper();

MyClass obj = mapper.readValue(jsonString, MyClass.class);
String json = mapper.writeValueAsString(obj);

Python — intégré
import json

Parsing
data = json.loads('{"name": "Alice", "age": 30}')
print(datal["name"])

Sérialisation
json str = json.dumps({"name": "Bob"}, indent=2)

Fichier
with open("data.json") as f:
data = json.load(f)

with open("output.json", "w") as f:
json.dump(data, f, indent=2)

1.9 Concurrence

// Java — CompletableFuture
CompletableFuture.supplyAsync(() -> fetchData())
.thenApply(data -> process(data))
.join();

Python — asyncio
import asyncio

Workshop Agents IA - Python Cheatsheet - 7/10 2026-02-03

Python pour Développeurs Java - Cheatsheet

Adservio

async def main():
data = await fetch datal()
result = await process(data)
return result

asyncio.run(main())

1.10 Tests

// Java — JUnit
@Test
public void testAdd() {

}

Python — pytest
def test add():
assert add(2, 2) == 4

assertEquals (4, Calculator.add(2, 2));

Exécution
pytest test file.py -v

1.11 Idiomes Python Courants

1.11.1 List Comprehension

Equivalent de stream().map().collect()
squares = [x**2 for x in range(10)]

Avec filtre

evens = [x for x in range(10) if x %

Dict comprehension

squares dict = {x: x**2 for x in range(5)}

1.11.2 Unpacking

Déstructuration
a, b, Cc = [11 2! 3]

first, *rest = [1, 2, 3, 4] # first=1I,

Swap
a, b=>b, a
1.11.3 F-strings

name = "Alice"
age = 30

print(f"Je suis {name}, j'ai {age} ans")
print(f"Calcul: {2 + 2 = }") # Affiche

rest=[2,3,4]

2+2=4"

Workshop Agents IA - Python Cheatsheet -

2026-02-03

Python pour Développeurs Java - Cheatsheet

Adservio

1.11.4 Walrus Operator (:=)

Assignation dans une expression
if (n := len(items)) > 10:
print(f"Trop d'items: {n}")

1.12 Pieges pour Javistes
1.12.1 1. Indentation significative

[] Erreur de syntaxe
if True:
print("oui")

[] Correct
if True:
print("oui")

1.12.2 2. Mutable par défaut dans les arguments

[Bug classique

def append to(item, lst=[]):
lst.append(item)
return 1lst

append to(1l) # [I]
append _to(2) # [1, 2] « Surprise !

[] Correct
def append to(item, lst=None):
if 1lst 1is None:
1st = [1]
lst.append(item)
return 1lst

1.12.3 3. ==vsis

= [1, 2, 3]
b=1[1, 2, 3]

a==Db # True (valeurs égales)
ais b # False (objets différents)

Pour None, toujours utiliser 1is
if x is None:
pass

1.12.4 4. Pas de switch (avant 3.10)

Python 3.10+ : match/case
match status:
case 200:

Workshop Agents IA - Python Cheatsheet - 9/10

2026-02-03

Python pour Développeurs Java - Cheatsheet

Adservio

print("0K")
case 404:
print("Not Found")
case
print("Unknown")

Avant 3.10 : dict
actions = {

200: lambda: print("OK"),

404: lambda: print("Not Found"),
}

actions.get(status, lambda: print("Unknown"))()

1.13 Ressources

¢ Python Official Tutorial
* Real Python
* Python for Java Developers

Cheatsheet de référence — A garder sous la main pendant le workshop.

Workshop Agents IA - Python Cheatsheet - 10/10

2026-02-03

https://docs.python.org/3/tutorial/
https://realpython.com/
https://realpython.com/java-vs-python/

	Python pour Développeurs Java — Cheatsheet
	Philosophie
	Syntaxe de Base
	Hello World
	Variables
	Conditions
	Boucles

	Collections
	Listes (≈ ArrayList)
	Dictionnaires (≈ HashMap)
	Sets (≈ HashSet)

	Fonctions
	Définition
	Arguments par défaut
	Lambda

	Classes
	Définition
	Dataclass (≈ Record Java)
	Héritage

	Gestion d’Erreurs
	Fichiers
	JSON
	Concurrence
	Tests
	Idiomes Python Courants
	List Comprehension
	Unpacking
	F-strings
	Walrus Operator (:=)

	Pièges pour Javistes
	1. Indentation significative
	2. Mutable par défaut dans les arguments
	3. == vs is
	4. Pas de switch (avant 3.10)

	Ressources

